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A theory of spinodal decomposition for an ordering system with a conserved, scalar order parameter
is presented. The theory supports a scaling solution for the order parameter correlation function with a
growing characteristic length given by the Lifshitz-Slyozov-Wagner growth law L ~¢!/3. The structure

factor satisfies Porod’s law Q ~!*¢

at large scaled wave number Q, for spatial dimensionality d, and Q*

at small wave number. This result for small Q is nontrivial. Comparison of the theory with numerical
results shows good agreement for the order parameter scaling function. The theory builds on the post-
Gaussian approximation scheme developed previously by the author [Phys. Rev. E 49, 3717 (1994)] for
the nonconserved order parameter case. It is shown that in the lowest-order post-Gaussian approxima-
tion the unphysical result in the Gaussian theory, namely that the scaling function for an auxiliary
Gaussian field is negative for small wave numbers, is remedied.

PACS number(s): 64.60.Cn, 64.75.+g, 81.30.Hd

I. INTRODUCTION

Although the dynamics of the ordering process for a
nonconserved order parameter (NCOP) have been well
described by recent theories [1-5], a quantitative theory
describing the ordering of a system with a conserved or-
der parameter (COP) has remained elusive. In this paper,
a theory of phase ordering kinetics for such systems is
presented which reproduces nearly all of the qualitative
features of late-stage growth. The theory developed here
resolves certain technical difficulties found in earlier
theories. Recent theories for treating the growth of order
in unstable systems have successfully exploited the use of
an auxiliary field. An important limitation imposed on
the theory by assuming this field to be Gaussian is clear
in the case of a conserved order parameter. It was found
in Ref. 5 that the Fourier transform of the auxiliary-field
autocorrelation function, which must be positive by
definition, goes negative for small wave numbers. It is
shown here, by going beyond the Gaussian approxima-
tion, that this autocorrelation function is rendered posi-
tive.

While it has been difficult to develop a quantitative
theory for the COP case, a great deal is known about this
problem from experiment, direct numerical solutions and
from general arguments involving a collection of sharp
interfaces. The most fundamental result is that phase-
separating systems exhibit scaling [6]. In the late stage
regime, the system is divided into large domains where
the order parameter ¥(R,?) takes on one of the degen-
erate values 1, and these domains are separated by
sharp interfaces of width §&. The dynamics depend on a
single, macroscopic length, the growth law L (¢) which
characterizes the size of the domains and the curvature of
the interfaces and which grows in time. The order pa-
rameter autocorrelation function satisfies the scaling
equation

Cu (R O=(H(R,09(0,¢)) =y}F (x) , (1.1)
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where x =R /L (t) and x >>§/L(t). The structure factor
is the Fourier transform of C ,M,(R,t) which satisfies

Cyu(a)=LYRF(Q),

where Q =¢L is a scaled wave number and d is the di-
mension. It has been established in a variety of ways that
L(t) (Refs. [7-9]) is given by the Lifshitz-Slyosov-
Wagner (LSW) result L ~¢!/3,

There are several other important features which a
theory of spinodal decomposition should include.

(1) Scattering from a collection of sharp interfaces
(width £ << L) obeys Porod’s law,

F(Q)~Q—(d+l)

for large Q [10]. Equivalently, in coordinate space this
means that the first correction is nonanalytic in x and has
the general expansion

F(x)=1—ax(1+B,x +Byx*+ ---),

(1.2)

(1.3)

(1.4)

for small scaled distances x.

(2) Tomita [11] showed, assuming that interfaces are
sufficiently smooth, that the coefficients of even powers of
x vanish, B,,.,=0 in Eq. (1.4).

(3) The small Q behavior of the structure factor is given
by

F~0Q*. (1.5)
This last result is supported by simulations [12] and phe-
nomenological arguments [13], but no previous dynami-
cal theory could account for this feature. Indeed, the
correlation functions derived below exhibits all the
features mentioned above except for the Tomita sum rule,
which is also the most difficult to verify empirically.

Essentially all of the current theories for the growth of
order in an unstable systems assume the existence of an
underlying Gaussian auxiliary field. In previous work
[2,3], this variable m (R,?) has the physical interpretation
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that its magnitude gives the distance from R to the
nearest interface. It is assumed that the order parameter
can be expressed as a sum of an ordering field o, which is
a local functional of m, and a field ¢ which can be ig-
nored in the scaling regime. These theories have had
many successes and the basic development has been
pushed very far. In this paper, it is shown how the
method developed by the author for the NCOP case can
be extended to treat the conserved order parameter case
and explain essentially all of the features outlined above.
In the course of this work, it should become clear why
the COP case is so difficult. The appropriate theory in
this case is not a straight-forward generalization of the
method which has been successful in treating the NCOP
case. While the most direct implementation of the basic
method [14] is analytically appealing and elegant, it is
wrong in a number of important ways. In the most direct
application of the method developed in Ref. 2, one does
obtain scaling, universality, and Porod’s law—a substan-
tial accomplishment. There are, however, serious prob-
lems.

(1) Instead of the LSW growth law, one obtains the re-
sult L ~t'/* which is characteristic of surface diffusion.

(2) For small scaled wave numbers Q the structure fac-
tor goes as Q2 rather [15] than the observed Q*.

(3) The structure factor for the Gaussian auxiliary field
goes negative for small wave numbers. This unphysical
result caused Yeung, Oono, and Shiriozaki [5] to call the
entire theoretical development into question. Concern is
justified since this structure factor is related to the basic
probability distribution governing the theory and its lack
of positivity calls into question the stability of the solu-
tions obtained.

(4) In the COP case the Tomita sum rule is not, unlike
the NCOP case, naturally satisfied in the theory. Indeed
it appears to be violated by the theory in a substantial
way.

(5) Since ¢ is conserved, one has for a general field G,
which is not conserved, the result

(Y(q)G(—q)) =g’

for small wave number q. As will be shown below, it
does not appear to be possible to obtain this result within
the Gaussian approximation.

The resolution of the first three of these problems turns
out to require a rather substantial generalization of the
theory developed in Ref. [2]. A key first step is to under-
stand the important role of the diffusion field u of
O (1/L) relative to the ordering field o. It was suggested
in Ref. [14] that this inclusion could resolve the problem
with the growth law and give the LSW result. The way it
was treated there, however, was too ad hoc to remedy
problem (2). The resolution of problems 1 and 2 comes
from the proper treatment of the diffusion field. As dis-
cussed in detail in Sec. VID, problem 3 can only be dealt
with by going beyond the standard Gaussian methods. In
Ref. [3] the author has shown how to introduce such ap-
proximations in general, and, in particular, how the
lowest-order correction can improve the theory when
compared with the Gaussian theory. Similarly, problem
5 above can be addressed only by going beyond the

(1.6)
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Gaussian approximation.

In the NCOP case, it was shown how, by simply in-
cluding the first logical correction to the Gaussian case,
one can qualitatively change some aspects of the zeroth-
order solution. In particular, it was shown how the im-
proved theory can explain the recent numerical results of
Blundell, Bray, and Suttler (BBS) (Ref. [16]), which are in
qualitative disagreement with Gaussian theories. They
recently proposed an absolute test for theories of phase-
ordering dynamics. They considered an unstable system
with an order parameter ¥(1)=9(R,t,), which has an
ordered value lim,l_,m¢2(l)=11)%. They then point out,
based on direct numerical evaluation, that a plot of the
quantity

(-l — )]
([R— OB — P 2)])
versus the square of the order parameter correlation

function Cy ,(12) has a qualitatively different behavior
for small C 2 than that predicted by existing “Gaussian”

theories which give

C¢2(12)= (1.7)

’IT2 2
Cp="g [Cyy/%0)" . (1.8)

The numerical work by BBS indicates that C 4> 8Oes to

zero much faster than C fw for small C ,. It seems clear
that one must go beyond the Gaussian approximation to
obtain this result. In Ref. [3] a general theory was
developed where the Gaussian approximation serves as
an accurate zeroth-order approximation. More particu-
larly, it is shown that by including the first non-Gaussian
correction, the result of BBS described above is obtained
in a nontrivial manner. This gives one encouragement to
go on and apply these same ideas to the COP case.

In the next section, we define the problem and then
move on in Sec. III to a discussion of the ideas behind the
structure of the theory. These ideas are then implement-
ed in successively more sophisticated approximations in
Secs. IV, V, and VI. In Sec. IV the naive Gaussian ap-
proximation (NGA) is discussed. In this approximation,
the diffusive field u is ignored and the auxiliary field m is
assumed to be a Gaussian variable. In the Gaussian
diffusion approximation (GDA) the diffusion field « is in-
troduced, but again m is treated as a Gaussian field. Fi-
nally, in Sec. VI, in the lowest-order post-Gaussian ap-
proximation (PGA), the diffusion field is included and m
is treated beyond the Gaussian approximation.

II. PROBLEM STATEMENT

As usual it is assumed that the dynamics of spinodal
decomposition in its simplest form can be described by a
Langevin equation of the time-dependent Ginzburg-
Landau (TDGL) or Cahn-Hilliard type which drives the
evolution of a scalar order parameter ¥(R,1):

%‘fé=pov2[V'<¢)—v2¢]+n . 2.1)
The noise 77 in Eq. (2.1) is assumed to be Gaussian with
variance
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(n(1)m(2)) =2kz T(—D,V})8(12) , (2.2)

where T is the temperature of the driving bath and, for
example, 1 is the short-hand notation for (R,,#,) and

8(12)=8(R,—R,)8(t, —1,) . (2.3)

In Eq. (2.1) V(¢) is a degenerate, double-welled potential
with minima at 1, and D, is a bare diffusion coefficient.
The conservation law is enforced by the Laplacian acting
on the right-hand side of Eq. (2.1). The physical situation
of interest corresponds to a rapid temperature quench at
time ¢, from an initial disordered state to a final bath
temperature T below the ordering temperature. One can
neglect the noise in Eq. (2.1) with the expectation that
thermal fluctuations are irrelevant for late-time ordering.
Stochasticity is introduced via random initial conditions
characterized by (Gaussian) initial conditions with zero
average and variance

(Bo(R)P(R')) =B - »

where Yo(R)=4¢(R,?,). Thus, the initial state is assumed
to be completely disordered. The analysis is restricted
here, for simplicity, to the high symmetry case of a criti-
cal quench where the average of the order parameter van-
ishes

(¥(1))=0.

The important case of an off-critical
[{¥(R,0))0] will be considered elsewhere.

It will be useful in the discussion below to rewrite Eq.
(2.1) in the form

(2.4)

(2.5)

quench

A(l)t/!(l)=D0V§V'(¢(1))+n(1) , (2.6)
where
-9 4
A(1) o, +DyV7i. 2.7)

III. STRUCTURE OF THEORY

A. Review of original method

1. Separation of fields

The original theory developed for the NCOP case be-
gins with the separation of the order parameter into two
pieces [17]:

PY(R,t)=a(m(R,t))+¢(R,?), (3.1)

where o is a local function of a new auxiliary field m
which governs the domain structures and ¢, roughly
speaking, represents the fluctuations within ordered
domains. The introduction of the ordering field o and
the auxiliary field m involve several technical points
which are often glossed over. A full discussion is given in
Refs. [3,18]. The main point is that o(1) and m(1) can be
introduced into the theory rather generally and the field
¢(1) will not contribute to the late stage ordering if
(1) The quantity
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g3()=(V"(a(1))), (3.2)
becomes positive as the system orders.
(2) The quantity
B(1)=A(1)o(1)—DyViV'(o(1)) (3.3)

is small in the scaling regime.

These conditions ensure that ¢(1) remains small in am-
plitude and is stable (decaying) at late times. Once one
understands the conditions under which the field m can
be introduced and that the field ¢ serves as a perturbation
at long times, one must, as pointed out in some detail in
Ref. [17], introduce a probability distribution P[m],
which governs the m fields. It is the average over P[m]
which appears in the definition of g3(1) and feeds back
on conditions (1) and (2) above. Thus, one must choose
P[m] consistent with the requirement that B be small.
At the formal level, the simplest choice [19] guaranteeing
that B(l1) be small is to choose B(1)=0. This is
equivalent to assuming that o satisfy the original equa-
tion of motion with ¥»—o for a quench to zero tempera-
ture where the noise can be set to zero. This choice im-
plicitly determines the underlying probability distribution
P[m] governing the variable m. The P[m] associated
with the very rigid condition B(1)=0 will be very far
from a Gaussian and the associated problem will be as
difficult as the original problem in terms of 3. The alter-
native is to balance the need to have B(1) small and to
have P[m] be near a Gaussian and assume that weighted
averages of B(1) are zero. Since (B (1)),=0 by symme-
try, where ( ), indicates an average over a Gaussian
P[m], the simplest nonzero average is given by

(B(1)a(2))y=0. (3.4)

Assuming that P[m] is a Gaussian distribution, Eq. (3.4)
is sufficient to determine the variance {(m (1)m(2)), and
all other averages over m.

It was found in Ref. [2] that these conditions are
sufficient to make the o variable order. If the o variable
orders then o? approaches its uniform value 93, g3(1) is
positive at late times, and A(1)o(1) and V'(o(1)) ap-
proach zero in the long-time limit. Thus while B(1) is not
identically zero, it will be small at late times. In the scal-
ing regime one estimates

B(1)=1/t=1/L3. (3.5)

2. The auxiliary field m

The introduction of the auxiliary field m represents a
key step in the analysis. One expects that it is smoother
than ¥, but its zeros coincide with those of ¥ and mark
the position of the interfaces. The field m (R,¢) has the
physical interpretation that its magnitude gives the dis-
tance from R to the nearest interface. Then near an in-
terface m =0, but well away from an interface of thick-
ness §, m >>§, one has

o[m]=sgn(mN, (3.6)

where 9, is the equilibrium magnitude of the average



3488

value of the order parameter. Thus while m will smooth-
ly vary through an interface, o0 will show a sharp
behavior. This physical picture can be realized by assum-
ing [2] that o(m) satisfies the classical equation for an

equilibrium interface:
1o,(m)=V'(ag(m)), (3.7

with m the associated coordinate. In Eq. (3.7) the factor
1 is inserted for convenience, the notation

o0,(m)=3"0(m)/dm" (3.8)
is introduced and the boundary conditions are
lim o=z, . (3.9)
m—>tow

This choice for o guarantees that the system orders with
the appropriate values of ¢,. It should be clear from the
physics of the situation that at long times the fields m and
¢ are essentially independent and should be viewed as
fluctuating in separate function spaces. Since the dis-
tance between interfaces grows with time we expect

So(t)={[m (R,1)]*)
~L%1) .

(3.10)
(3.11)

3. Naive theory

In the most elementary version of the theory, for both
the NCOP and COP cases, it is assumed that m is a
Gaussian field and the average of the equation of motion
in the form

(B(1)a(2)),=0 (3.12)
determines the variance
Co(12)={(m(1)m(2)), (3.13)

which, because m is a Gaussian variable, also determines
C,.(12)=(a(1)a(2)), . (3.14)

Essentially any quantity can then be evaluated in terms of
Cy. We analyze the consequences of this theory in detail
below in Sec. IV.

B. Diffusion field

As explained in the introduction and in more detail
below, the naive theory fails in several ways. The formal-
ly most obvious place where the theory may be ques-
tioned concerns the Gaussian approximation for the
probability distribution P[m]. This point is discussed in
the next section. Here, the physically important im-
provement in the theory associated with the inclusion of
a diffusion field will be discussed [20].

In the conserved case there is a nonequilibrium current
which flows across ordered regions and couples distant
interfaces. If we look at a perturbation u (R,?) [21] in a
region ordered with Y=+,

Y=vo—u, (3.15)
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and linearize the equation of motion, Eq. (2.1), in u we
obtain

% =DV V" (Yo)u —Vu]
where we ignore the noise. In the scaling regime, where
V~L !, and 3/3t,~L 3, this reduces to the familiar
result V2u =0 away from the interfaces. More generally,
since V"'(3,) >0, one has a diffusive dynamics. In an A4-
B alloy, for instance, u includes the current of A (B)
atoms through regions of ordered B( 4) phase. The in-
terfaces are the source of u with a contribution propor-
tional to the local curvature. Because the curvature de-
pends only on the length scale L, we expect u ~O(1/L).
With the goal of describing a set of ordered domains with
the superposed diffusive field coupling the interfaces, we
write [22] ¥y=o0(m)—u which we insert in Eq. (2.1) and
expand in powers of u to obtain

do

(3.16)

~5I~=D0V2[—q(2)u +10,—Vio+0(u?)], (3.17)
where
gi=(V"(0))=V"(3y)+0(1/L), (3.18)

and the average is over m. We will see below that only
the u term on the right-hand side of Eq. (3.17) will con-
tribute to the scaling properties of the system. (Loosely
speaking, the terms o, and V2o enforce the shape of the
interfaces and do not contribute to the scaling behavior.)
Counting powers of L immediately gives us [t]~[L3],
n=4%.

The key step in our development is to choose a consti-
tutive relationship for u in terms of the fields we have
available: o(m) and m. The field should be a scalar, con-
served in the bulk, odd in m, and of O(1/L). It should
be recognized that taking u ~O (L ~!) breaks a symmetry
in the theory associated with the result that a general
correlation function C,p(12) in the scaling regime is
given in terms of even powers of L ~ .

The condition that u be conserved,

Jd'RuR,0=0, (3.19)
is closely related to the requirement that F(Q)~Q* for
small Q. These considerations lead to the general form
Uy 2
u(R,t)=Ta(R,t)+V u,(R,t) . (3.20)
It is worth noting that while o is conserved o(Vm)>?, for
example, is not. Thus, it is not an option to choose u, as
a function of m. Since the Laplacian is of O(L %), u,
must be of O (L). One has the general expansion [23]

u, =Am[1+A(Vm)P?+A(Vm)*+ - -+ ]. (3.21)

While one could take the A’s to be a function of o2, this
would make no difference in the scaling regime where one
can replace o2 with ¢3. In this paper, only the simplest
assumption
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ug )
u =TO'+}\,V m (3.22)

is explored. Taking Eq. (3.22) as our ansatz for u, our ex-
pression for 1 becomes

Y=o(m) l—-ti(-)-

7 —AVim . (3.23)

The two additional terms can each be given a natural in-
terpretation. Near an interface, Vm is normal to the in-
terface and of constant magnitude, so V?m is a measure
of the local interfacial curvature. The u, term diminishes
1 everywhere by an amount proportional to the mean in-
terfacial curvature.

A key element in the development here is that ¥ now
depends on V?m as well as m and the quantity B(1),
defined by Eq. (3.3), must be generalized by replacing
o —1 to obtain

3489

where integrals over repeated indices are implied and the
generalized Hermite polynomials are defined by the func-
tional derivatives

H,(12. . .m)=(—1)re o™

8” _Kolm]
X em()om (2) - om(m) ’

(3.26)
where
Ko[m]=1[d1d2m(1)Cq'(12)m (2) (3.27)
and C, '(12) is the matrix inverse of C(12)
Jd3¢51(13)Cy(32)=8(12) . (3.28)

Various averages can then be worked out in terms of
Gaussian averages { ),. For example the average of a

B(H)=AP(1)—DyV3V'(§(1)) . (3.24)  one-point quantity is given by
(dlm(1)))= 491){4,(1)),, (3.29)
C. General distribution function for m n=0
How can one generalize previous work and gain some where we introduce the convenient notation
control over the probability distribution governing the .
variable m? Again, the idea is to minimize B(1) while still é,(m(1)= d #(m (1)) (3.30)
having a near Gaussian distribution for m. One can be- " dm™(1)
gin by assuming that m is governed by a general probabil-
ity distribution P[m] given by an expansion in terms of and
generalized Hermite polynomials:
40(1)=4,(11...1). (3.31)
— KO[m] et n n
Plm]=e "20 Ay(12.. .mH,(12....n), (3:25) A general two-point average can be written in the form
J
[} n '
(dY2N=F 3T ———4,.,(1,2){, _(1x,(2)),
oy Sosln—sht "™

=((1)x(2)) o+ A,(11){dx(1)x(2))g+2 4,(12){;(1)x1(2)) o+ A5(22)(b(1)x5(2) ) o+ - - -

Here we have also introduced the notation 4,.,(1;2) to
indicate that A4, has s arguments equal to 2 and n —s ar-
guments equal to 1. It is assumed that we have a sym-
metric quench such that all 4, with odd »n vanish. For
n =2 there is an additional (beyond C,) independent
function 4,(12) for determining all two-point functions.

The idea is to use a sequence of constraints to deter-
mine the coefficients 4,. Since ultimately one requires
that the quantity B(1) be small, one can choose the
coefficients A,, up to order n, by enforcing the con-
straints

(B(1)a(2))=0,
(B(1)o(2)o(3)0(4))=0,

(3.33)
(3.34)

etc., up to level n. In principle, as n increases, one might

(3.32)

suppose that the theory enforces the condition that B(1)
be small more effectively. In the work here, we will look
at the lowest-order versions of this theory.

IV. NAIVE GAUSSIAN APPROXIMATION

In this section, we explore the naive theory formally
presented in Sec. III A 3.

A. Scaling equation of motion

In the scaling limit in the case of equal times
(t,=t,=t) one finds, to leading order in L ™!, with
Y(1)=0c(m (1)) and the m dependence of o satisfying Eq.
3.7,

Cy,y(12)=C, ,(12)=y3F (x) , 4.1)
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where x =|R;,—R,|/L and L*t)=uS,(t). Since the
field m is a Gaussian variable the scaling function can be
expressed back in terms of the variance of the field m:

Fx)=2sin~11(x), 42)
where, returning to a more general parametrization,
F12)=Cy(12)/S(2) . (4.3)

In the scaling limit f is only a function of x. The quanti-

ty
y(12)=1/V1—f¥12) (4.4)

also naturally enters the analysis. In evaluating the aver-
ages in Eq. (3.12) one needs, for example, the result valid
in the scaling regime,

__ 2%
CopoRD=—"32f (x)y(x)

(4.5)

Using this result in Eq. (3.12) and introducing scaled vari-
ables, one obtains

pox-VF(x)=V? |tan %F +V2F |, 4.6)

where 2D0/,L0=L3L. Assuming that p is a constant im-
mediately gives the surface diffusion growth law
L(t)=t'* The key ideas in finding the solution of the
scaling equation, Eq. (4.6), is discussed in some detail in
Refs. [2,14].

B. Analytic results

1. Short distances

The key points involved in solving Eq. (4.6) follow
from a study of its short- and large-distance solutions.
For short scaled distances F is of the form given by Eq.
(1.4). The coefficient in the term of O(x), corresponding
to Porod’s law, is given by
172

2 , 4.7)

md—1)

which is the same as for the NCOP case, B; is given in
Ref. [14] and the B,,., are proportional to B, which is un-
determined from the short-distance behavior.

2. Long distances

For large x, where F is small, one can again solve Eq.
(4.6) analytically. There are a number of solutions in-
cluding a growing exponential solution, an algebraically
decaying solution and the physically acceptable damped
oscillatory solution given by
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_ T
F=Fox "2/exp | = 2ul/3 [x*/— 7 x2/3 } ]
= T
Xcos | V33" |x*3+ 3”(2)/3x2/3+¢ ] ] ; (4.8)

where F, and ¢ are constants.

3. The eigenvalue problem

The matching of the short distance and the physically
acceptable long-distance behavior can only be achieved
for selected values for uy and B,. One of the important
characteristics of the method developed in Ref. [2], and
in subsequent work, is the introduction of a nonlinear ei-
genvalue problem. This is the mechanism which enforces
universality so that the scaling function F depends only
on d. In the NCOP case, a parameter analogous to p, is
selected. In the COP case one has the additional parame-
ter B,. This can easily be seen by integrating Eq. (4.6) us-
ing the Green’s function for the Laplacian (see Ref. [14])
and using the result that F is isotropic in x. One then ob-
tains for (d >2)

V2F +tan gp =77 | iz ALK L)
4.9)
where
I — x d—1 . .
2(x) fodyy F(y) (4.10)

Inserting the short-distance expansion Eq. (1.4) for F one
easily finds

2
d—2

and we must vary I,(e) (and B,) to find the physical
solution. Since the physical solution selects a nonzero f3,,
one finds, for nontrivial reasons, that this theory does not
satisfy the Tomita sum rule. This is unlike the NCOP
case where the Tomita sum rule is satisfied naturally
within the theory. One therefore has a nonlinear eigen-
value problem with p,=0.337596, B,=—0.0778 for
d =2, while 4,=0.175 171 and B,= —0.0356 for d =3.

—B,a(3d —1)= I,(0) 4.11)

4. Spatial moments

One can gain insight into the quality of this solution by
looking at the moments of the scaling function

W,= [d%x?F(x) . (4.12)

The lower-order moments can be evaluated analytically
by multiplying Eq. (4.6) by x?, p an even integer, and in-
tegrating over all x to obtain

W,=0, (4.13)

which is a statement of the conservation law, and
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_—2d

fd X tan %F(x)

These results should be interpreted in the following light.
It can be shown numerically that

o
W= [ dxsin | F(x) (4.15)
is negative, while
m
W= [ d’ tan S Fx) (4.16)

is positive. One can understand these results qualitative-
ly by expanding the trigonometric functions inside the in-

tegrals and using the conservation law, W, =0, to obtain
W= f dixF¥x)+ -, 4.17)
d 3
W= g fd xF3(x)+ - (4.18)

Since W, is zero there must be cancellation between the
positive and negative regions in F(x). Since F? will have
more weight in the small x regime, where it is positive,
than in the smaller amplitude regime where F is negative,
we expect

[ d%xF3x)>0 4.19)
and

Wen <O (4.20)
and

Wian>0 . (4.21)

The condition W, >0 gives W, <0. This guarantees
that

F(Q)= [ d%e'®*F (x)

2
=—%—W2+0(Q4) (4.22)

is positive for small scaled wave numbers and goes as Q?
for small Q. The result W, <0, however, gives

F(@)= [ dxe'®*f (x)

—fd xe 'Q%sin —F(x)

2
=2y <o 4.23)

for small Q. This is the unphysical result discussed by
Yeung, Oono, and Shinozaki [5] and appears to be a gen-
eral result for Gaussian theories.
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V. GAUSSIAN DIFFUSION APPROXIMATION

A. Scaling equation of motion

We turn now to the model which includes the diffusion
field given by Eq. (3.22) but where m is still treated as a
Gaussian variable. This will be called the Gaussian
diffusion approximation (GDA). This theory resolves
many of the problems associated with the naive theory.
In Sec. IIIB, we argued heuristically that this theory
leads to the LSW growth law L =t!/>. We go through
the analysis here more carefully. We evaluate

(B(1)a(2)),=0 (5.1)

for the case of equal times, ¢, =t,=¢ >0, in the scaling
regime (where R =|R,—R,/, and L >>§) with B(1) given
by Eq. (3.24) and ¢ given by Eq. (3.23). This calculation
must be carried out with care. The first step is to show,
dropping terms of O(L ~*) and higher that Eq. (5.1)
reduces to

%ca,a(k,z)=wovﬁzm,n , (5.2)
where

S(R,)=W(R,1)—VxC; (R,1), (5.3)

W(R,)=(V'($R,1))a(0,t)),, (5.4)
and the notation

C,.s(R,1)=(A4(R,1)B(0,1)), (5.5)

is introduced. We will now show that the leading order
contribution to = is of O (L ~!). Therefore, we can drop
terms of higher order.

Consider first the second term in Eq. (5.3).
finds that

One easily

u
Cy,(R,D)= ‘1——L°— C,.(R,t)—AV%C, ,(R,1) .

(5.6)
Since C, ,~0(1), C,, ,~O(L),
—V%Cy,,(R,N=O(L?) (5.7)
and to leading order
2(R,)=W(R,1) . (5.8)

The more complicated quantity, W(R,t), can be treated
by expanding the derivative of the potential in a power
series in u

V’(¢)=V’(¢7—u)
=70,+ 2
1=1

where, in the first term, Eq. (3.7) has been used. Inserting
Eq. (5.9) into W, given by Eq. (5.4), one obtains

V(H’”(a) (5.9)

W(R,1)=1C, ,(R,1)+ 2 wO(R,t),

=1

(5.10)
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where
_ 1
WI(R,t)=(l—'l)(uI(R,t)V“+”(0(R,t))a(0,t))0 .

(5.11)

A key result used in the evaluation of the W' is the re-
cursion relation obeyed by the matrix elements:

M) 5(12)=¢ A(D)[V2m (D FB(2)),

=(s—1 )Sgt)m(j,EZ)_S{)Z)m(j 1—,}3)

+ViCo (125!, (5.12)
where the useful notation
S =((V’m)?), (5.13)

is introduced and 4,, for example, indicates the deriva-
tive of A [m(1)] with respect to m(1). Repeated use of
this result, together with the fact that C, ; ~O (L ~2) if
either 4 or B contains derivatives of o, allows one to
show that the leading order contributions to W are of
O(L™'). Note, for example, that the contribution

%Caz,‘, in Eq. (5.10), which contributed to the scaling

equation in the naive theory, does not contribute in this
case because, as given by Eq. 4.5), C, ,=~O(L ~2). The

only term of O (L ~!) contributing to W is

2
u
W(l)(R’t)= _ 090

C, . (R,1)—Ag3V%C,, ,(R,1)

(5.14)

and all other W(R, 1) are of higher order in L ~! in the
scaling regime. In this analysis it is useful to introduce
the general notation

As'/’o:l llim a(x)V =+ (a(x)), (5.15)

q2_, = llim V¥ (a(x)) . (5.16)
It has been assumed in this development that

SM=0(L7?) (5.17
and

sP=o(w™h. (5.18)

It may be possible to find solutions where S§' ~O (L ).
Such solutions are more complex in nature and require a
detailed study of the nonuniversal short-distance
behavior in the system. The detailed interpretation of the
parameters A and u, in this case will depend on the
behavior of S§!. Since these results do not influence the
scaling behavior of the system, we make the simpler as-
sumption given by Eq. (5.17). Inserting these results for
W back into the equation of motion, we obtain

10
Egt'ca,a = _DOq(2)V2

Ug

L (5.19)

C,,tAVC, ,

It is then straightforward to convert this equation to a
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scaling equation. First, we still have to leading order that
Cy,y is given by Eq. (4.1). Next, using the Gaussian na-
ture of m, one finds

172

f(x),

So

2
Cono(12)=1 ’T (5.20)

where f is again defined by Eq. (4.3), and f and F are re-
lated by Eq. (4.2). Inserting these results into Eq. (5.19)
leads to

172
A |28
ux-V F=V2 |y F+ ’p‘; 20 v, 521
Lyg | ™
where
L
p=-1L (5.22)
2Dyq;5

and we make the initial choice L>=nS,. If we change
characteristic lengths from L to Ly=L /I, then x—x/I
and the scaling equation takes the form

172

1A 28
px-V F=V2 |[%yF + '/;" 2 w2ip| . (5.23)
Ly
If we choose [ such that
172 —
1= Mo 1250 | _ 197 (5.24)
uLyd | pd '
and define
ugl?  mou
g=2ol” _ Moo (5.25)

uo V2’
then we have the fundamental scaling equation in this ap-
proximation

xF'=V2[aF +Vsin(nF/2)] . (5.26)

This is a nonlinear eigenvalue problem for F, with a
unique solution under the boundary conditions Eq. (1.4)
and lim, , . F=0. We will see that # is determined as
part of the solution. The only parameter left to be
specified externally is the dimension of the system, d, ap-
pearing in the spherically symmetric Laplacian.

B. Analytic results
1. Short scaled distances

As in the naive case, it is instructive to examine the
small- and large-x behavior of F analytically. It is again
useful to carry out a first integration and obtain

1 dId(x)

4F +Vsin T F = —— ~i2

TF=—— —2[I,(x)—I( )]

(5.27)

with the integrals I; are defined by Eq. (4.10). Inserting
the short-distance form Eq. (1.4) into (5.27) gives, to O(1)
and O (x), respectively,
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_ mald | 2()
g=— 1= (5.28)
a=—37%d +1)aB,/4 . (5.29)

The interpretation of the short-distance parameters is
now different from the NCOP and naive cases where a is
given by Eq. (4.7). In this case, we find that a and B, are
undetermined, and the two eigenvalues to be found in this
case during the numerical solution of Eq. (5.27), can be
taken to be a and B,. It will turn out that 3,70, so that
again, as in the naive theory, F does not satisfy the Tomi-
ta sum rule. Notice, using Eq. (5.25) that the ratio u,/A
is determined once a, 8,, and / 2 are determined.

2. Long scaled distances

At large scaled distances, F decays to zero and Eq.
(5.26) reduces to the same linear equation for F as for the
naive case except with p,=2/7. Therefore, F is again
given by Eq. (4.8), but with this specific choice for p,,.

3. Spatial moments

The small Q behavior of F(Q) can be related to the mo-
ments of F(x), defined by Eq. (4.12), as in the naive case.
Multiplying Eq. (5.26) by x” and integrating, we find
Wy,=W,=0and

_ 8d(d +2)

We=—aza "r (5.30)
where
W= [dixf(x). (5.31)

We thus have F=Q,0* to lowest order in Q as desired,
with
1
d+n "

Notice, however, because of the minus sign, that there is
again a problem. Either @, or W, must be negative,
while mathematically, from their definitions, both must
be positive. We will see below that F is positive definite,
and thus

Wf=;i_13’(Imq(t)lz)/S0 <0.

Q,= (5.32)

(5.33)

As pointed out by Yeung, Oono, and Shinozaki [5], this is
a short coming of the assumption that m(R,?) is a
Gaussian variable.

C. Numerical results

The numerical solution of the scaling equation Eq.
(5.27) involves a nonlinear eigenvalue problem where a
and 3, must be chosen to satisfy the boundary conditions
at small and large x. We find a=1.1262, 8,=—0.2650
in d=2 and a=0.965622, B,=—0.252672 in d =3.
Figures 1 and 2 compare our d =3 correlation function
and structure factor, respectively, with recent numerical
results of Shinozaki and Oono [12]. We have normalized
their data so that the first zero of F coincides with ours.
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FIG. 1. Comparison of the theoretical scaling function F(x)
in the GDA with the numerical result (dashed line) from Ref.
[12].

We see that there is good agreement for F(x) but only
fair agreement for F(Q). The width of F(Q) given by the
theory is too narrow compared to the numerical result.
It is worthwhile noting that the F(Q) obtained in the
naive theory [24] is too broad compared to the numerical
result. This makes sense since the naive theory has
F~Q? for small Q and B, is much smaller than in the
GDA. In some sense, the theory has over corrected and
the value of @, is too small. The auxiliary quantity f (x)
and its Fourier transform f(Q) are shown in Figs. 3 and
4. Note the negative portion of f(Q) for small Q. Read-
ing off the numerically determined value to be
W;=—0.23,..., we obtain @,=0.033. .. .

D. Very short-distance behavior

The steps leading from Eq. (5.1) to the scaling result
Eq. (5.26) relies on the assumption that one is looking at
distances R >>§, where, for example,

C,,o(R,=O(L7?). (5.34)

4.0 T ——

3.0t
§ 2.0t
p{

1.0t

0 .—s.’v'v’"'..‘ , B
0 0.5 1.0 1.5 2.0 2.5 3.0

Q
FIG. 2. Comparison of the theoretical scaling functions F(Q)
in the GDA (long-dashed curve) and PGA (short-dashed curve)
with the numerical result from Ref. [12]. All curves have been
normalized to have the same peak position.
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FIG. 3. Autocorrelation function f for the auxiliary field m
for the GDA in three dimensions.

In contrast, for separations R =&

Co,0(R,1)=O(L ) (5.35)
and the evaluation of Eq. (5.1) is more complicated. As
will be shown below, the matching of the short- and
long-distance behavior results in an additional constraint
on the parameters u, and A.

An important aspect of this calculation is that it gives,
self-consistently, the quantities S§*. In the NCOP case,
as L—-»oo,S§,2) =%, but in the COP case we obtain more
involved results. It is also important to recognize that for
the scaling limit associated with the LSW growth law to
be consistent, one must have the self-consistent result S{"
vanish at least as fast as O(L ~!). In our analysis, here,
we assume that S{¥ ~O(L ~?) and defer discussion of
this quantity for now.

The short-distance evaluation of Eq. (5.1) has the lead-
ing contribution of O (L ~!) which has the form

V:3(R,1)=0. (5.36)

0 1.0 2.0 3.0 4.0 5.0
Q

FIG. 4. Fourier transform of the autocorrelation function for
the auxiliary field m for the GDA in three dimensions.
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In evaluating 2(R,¢), given by Eq. (5.3), one begins with
the expansion

R 2
2d
Terms higher than W'? do not contribute at this lowest

order of L ™! and one then has that V2Z(R,?)|g—,, at
O(L ™), is given by

Co(R,1)=S, SH+ - (5.37)

RPN 2 1 <o 2=
7556 fwdxaz(x)] >—S§ 1+ || =0,
(5.38)
which reduces to
d
(2) —
S§ =S5 (5.39)

Note, as for the NCOP case, S{?’ is independent of the
details of the potential.

The other limit of interest at O(L ') is where
& <<R << L. This regime is discussed in detail in the Ap-
pendix. In this case, one obtains a matching condition
between the short-distance behavior and the scaling
behavior. This condition, with &@ =al, is given by
—1+—’2’—az<d—1)—xzy2A,—xyAV‘2>/¢o=o, (5.40)
where AV'? is given in the Appendix by Eq. (7.11), A, is
defined by Eq. (5.15), and

y==S 62) - %ﬂ;&z .

In the case where A=0, we go back to the old result for @
given by Eq. (4.7). Note that A does depend on the details
of the potential through A, ¥, etc.

(5.41)

E. Parameters

At this stage all of the various parameters can be deter-
mined in terms of the single parameter /, and properties
of the potential. Since y is a function of d,a (which is
determined as a solution of the eigenvalue problem) and
I,A can be determined as a function of /,d and properties
of the potential using Eq. (5.40). These values of A are
then inserted into

3?2 T

_ 3 —_To 42
§ 4+ aB= =g (5.42)

to determine u in terms of /,d, and properties of the po-
tential. Finally, the amplitude in the growth law is deter-
mined by

_Vaut

(5.43)
Ty

n

In the case of the ¥* potential, where A, =6, g3=2,
and AV?=—6, the solution of Eq. (5.40) is given in
three dimensions by
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1+2m(al)? 2
51+ —%— }
A= , (5.44)
3[1—57”«11)2]
and
ug=—3V2maB,\I? . (5.45)

The situation here where [ is undetermined is unlike
the NCOP and naive cases where there are no undeter-
mined parameters—the scaling function and the charac-
teristic growth law are fixed. In the case discussed here,
the overall amplitude of the growth law L (¢) is not fixed
by the scaling equation. There are a number of ways of
obtaining an additional equation for /. The most practi-
cal choice for the GDA is to look at the results of fixing
the scale used for F(x). Suppose the position of the first
zero in the scaling function is determined, using some
other method, to be given by R (1)=R(2Dyq3t)'”?. In
our theory here, we have that

Ro(t)=rLy(t)=rL(t)/I , (5.46)

where we find explicitly from our numerical solution in
three dimensions that r =1.49, . ... Furthermore, using
Egs. (5.22) and (5.24), we have that

L(t)=L(2Dygi'"?, (5.47
where
4
p3=3Av2 AV2 . (5.48)
o
Equating the two expressions for R(t) gives
(R /rpp=32M (5.49)
™o

For a given R, this equation, together with Eq. (5.44),
determines A and / and allows a direct comparison with
numerical studies of the same problem. Note that these
statements are dependent on the form of the potential.

VI. POST-GAUSSIAN APPROXIMATION

A. Equations of motion

In this section, the theory is extended to include the
first nontrivial post-Gaussian approximation where aver-
ages are over P[m] given by Eq. (3.25) with all 4,=0 ex-
cept for n =0 and 2. We call this the post-Gaussian ap-
proximation (PGA). For simplicity here we restrict the
analysis to the case of equal times t =¢; =¢,. The scaling
properties can be expressed in terms of the two quantities
f(x)and

AZ(RI_RZ’t)

g(x)= S0

(6.1)
In this case, g(x) is a measure of the non-Gaussian
corrections. One has by construction f(0)=1. In this
analysis, one sees that in evaluating two-point averages in
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the scaling regime that g (0) is typically multiplied by fac-
tors of y [defined by Eq. (4.4)]. Since as R goes to O, f
goes to 1 and y blows up, for consistency, we must
choose g(0)= A4,(11)=0. Since this result simplifies the
subsequent analysis considerably we enforce this condi-
tion at the beginning.

The technical results necessary to carry out averages
for the n =2 model are outlined in the Appendix of Ref.
[3]. One finds, for example, that the order parameter
scaling function is related to f and g by

F(x)=-1~2r—[sin"1f +2yg], (6.2)
where v is defined by Eq. (4.4).

It was suggested above and in Ref. [3] that for a proba-
bility distribution P[m] characterized by coefficients
[Co, Ay, Ay, - - ., A, ] One can impose n + 1 conditions of
the form

(B(1)o(2)o(3) -+ a(n+1))=0. (6.3)

In Ref. [3] for the NCOP problem, it was shown that for
the case where P[m] is characterized by [C,, 4,] one
can enforce essentially all one and two-point averages of
the form

Q,(=(B (o (1))=0, (6.4)
02,(12)=(B(1)oe™1)e¥*'(2))=0, 6.5)
QE,(12)=(B (1)t (1)a%2))=0, (6.6)

for integers n and ! and the superscripts O and E stand
for odd and even sectors. In the case of a COP one can-
not satisfy all of the Qg ; for all n and /. Indeed we must
be less ambitious and require [25]

Qy(1)=(B(1)o(1))=0, 6.7)

08y(12)=(B(1)a(2))=0, (6.8)
and

Q54(12)=(B(1)o(1)0*2))=0. (6.9)

B. Scaling regime

The evaluation of the condition Qg o{12)=0, in the
scaling regime, leads to a result which looks very similar
to the result obtained in the GDA. After carrying out
the same rescalings and introducing the same parametriz-
ation, one obtains

xF'=Vi[aF +Vi(f +2g)] . (6.10)

Notice that the only modification of the GDA result
given by Eq. (5.26) is to replace f by f +2g on the right-
hand side.

The important new element in this case is the evalua-
tion of the quantity 9(1{0(12)=0 in the scaling regime.
This is a rather involved calculation. The main result
needed to evaluate the various averages in the first non-
trivial post-Gaussian approximation is, for a general
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function G of m,

- e
(G)=(G)o+ [d1ad2 A2(12)( smmsm(z)G)o’
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where ( ), indicates a Gaussian average over m. We
then obtain, after considerable algebra, that in the scaling
regime the leading contribution is of O (L ~2 and is given

(6.11) by
J
[0§4(12)— Qo DY31/Dy=M,, | —S& =243 +2 1+% SIS +44P)
+M,, [(vco)2 —1+4 1+% S +8 1+—‘2; AP
+VC,V 4, —4+16‘1+% S2(2) ]
2
+M, 2SP AP [—1+2 1+§]S{,2"+M1,3A§2’(VC0)2 —2+8 1+% S},”}
+2M (VCyP[(VCy*+8VCy-V A, ]+4M, s AP (VC,)* (6.12)
[
where the matrix elements M, , are given by correction function
M, ,(12)=(o2(1)A,(2)), , 6.13 fg
R ¢ T Fru—— +1 — |[fe—m+EER ] (6.20)
where ZTomn f
5 5 where
A(l)=0%1)—¢3, (6.14) 617
the integer subscripts # and / indicate derivatives and z= T ) 6.21)
A(22’=11im —V% 4,(R,1) . (6.15)  and
—0
P=322+(o—n)z—SP(1+w—7) . (6.22)

Since Cy and A4, decay to zero for large separations,
one finds that the coefficient of M, must vanish. This
gives the result

—SF—242 +2

1+2 |s@s@ +44)=0.

(6.16)

This result also comes from the local calculation
Q,(1)=0 and with 4%*=0 reduces to the result, Eq.
(5.39), obtained in the GDA.

Returning to Eq. (6.12), one can evaluate the matrix
elements M, ; in the scaling regime and find that each has
the common factor

0 o0 3
Dof_wdxltrﬁ(xl)f_wdsz(xz)% . 617
After introducing the notation
— 2 | @
0=8 H_E A7, (6.18)
1=V1+e?, (6.19)

scaling variables, and canceling the common factor, one
obtains the basic equation determining the non-Gaussian

Finally, in coupling this equation with the equation deter-
mining F, we must remember to rescale the scaled dis-
tance x —x /1. This involves introducing

z=1% (6.23)
to obtain
1 Tfe s
‘= | f 7+ =P, (6.24)
i mra—n P 0y
P=32+(0—m2z—SP(1+o—7) . (6.25)

The nature of the problem is now clear. We have a
coupled set of equations, (6.24) and (6.10) for f and g, re-
spectively, which we expect to form an eigenvalue prob-
lem. Again we will have eigenvalues a and ,, just as for
the Gaussian case, but now with the additional variables
A and I. The inclusion of 42 as an eigenvalue is fa-
miliar from the NCOP case. The introduction of the pa-
rameter /, which does not enter the GDA, is introduced
here only through the equation for g. One proceeds as in
previous cases by analyzing the short- and long-distance
behaviors and then numerically searching for the associ-
ated nonlinear eigenvalue problem which connects these
physically acceptable behaviors.
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C. Analytical results

1. Short-distance behavior

In looking at the short scaled distance behavior, we
have the expansions
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_ 2g1 +Bo( 1 _go/ao)
2 2(ay+g,)

(6.29)

Using these results in the equation for F leads to the gen-
eralizations of Egs. (5.28) and (5.29):

2I,()
f=1—ax?—Bx>+ -+ (6.26) u’—2d(a0+2go)=ﬁ (6.30)
and
g=—gox2—gx3+ - . (6.27) and
The expansion coefficients for F given by Eq. (1.4) are re-
lated to these coefficients by —air—3(d +1)(B,+2g,)=0 . (6.31)
2 8o
=21 2a, [1+=— |, 6.28) . .
- %o a, ( The equation for g, Eq. (6.24), then gives the results
_J
_ ay(zo—7)
go 4(2zg+w—n)+3z,/z, ’ 6.32)
_ 30{720_377+(g0/ao)[921/Z0_3220_ 12( 1020/3+a)_7’)]} (6 33)
& 1202z + 0 —1)+62, /2, ’ :
[
where The key point here is that the large x form for f does not
1212 oscillate with distance. This is qualitatively different
Zo= % , (6.34) from the Gaussian case and the first indication of the
™ significant difference in the form of f in this case.
and
3. Spatial moments
z;=3z2} Ho—n)zg—SP (1+0—7) . (6.35)

2. Long-distance behavior

We find for large x that f and g will decay to zero and
we find that Eq. (6.10) reduces to the same linear equa-
tion satisfied by F in the Gaussian case. Thus, asymptoti-
cally F shows the same damped exponential behavior as
in the Gaussian case as given by Eq. (4.6). If one looks
individually at f and g, one finds something very interest-
ing. f and g individually decay less rapidly than F. f and
g decay as exp—«x while the sum F =f +2g decays ex-
ponentially but with an exponent proportional to x*/3. It
is not difficult to determine the decay constant x govern-
ing f and g. We assume

f=foexp(—kx), (6.36)

g =8 exp(—kx) , (6.37)
where

fot28,=0 (6.38)

and find, after inserting these forms into the linearized
version of Eq. (6.24),

S (1+w—mn)
e=T20 T2 A (6.39)
2(3n—20)!

Turning to the moments which govern the small Q
behavior of F(Q) and f(Q), we find the easy generaliza-
tion of Eq. (5.32) for the coefficient of the Q* term in the
small Q expansion of the structure factor F(Q) to be
given by

_ 1
(d +4)

Since we shall find in this case that f (x) is positive for all
x we see that it is the sum f +2g whose integral must be
negative, if @, is to be positive. This is discussed in more
detail below.

Q,= Jax[f(x)+2g(x)] . (6.40)

D. Conservation laws

In the previous work on this problem, it has not been
difficult to construct the theory such that the order pa-
rameter autocorrelation function satisfy the conservation
law

d .4 -
— Ja°RC, R=0. (6.41)
This was basically guaranteed in the current theory by
satisfying the equation of motion given by Qg o(12)=0.
Consider the more general correlation function

Cy,6(12)=(Y1)G(2)) , (6.42)
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where G is not conserved. In terms of Fourier transforms
and apart from uninteresting terms which depend on the
initial conditions, one expects

)={¥(q,2,)G(—q,t,)) (6.43)
~q? (6.44)

Cucla, st

for small q. Is the theory developed here compatible with
this general result? Let us carry out the calculation of
C,,c in the scaling regime. To leading order in the scal-
ing regime where

—AVim , (6.45)

v=t=c

it is clear that the condition that C, ¢ is conserved can be
replaced by the condition that

C,.6(Qt),t,)=~q? (6.46)

for small g. We therefore need to calculate C, ; in the
scaling limit using our lowest order post-Gaussian ap-
proximation. We have quite generally

Co6(12)=CP(12)+24,(12)CP ¢ (12)

a

(O) c(12)+24, (12)3(:—(12)
0

CY%(12)

(6.47)
where C\°; indicates the correlation function evaluated
in the Gaussian approximation. The second step in Eq.
(6.47) follows from a general theorem proven in Ref. [2]
regarding the derivatives of correlation functions with
respect to Cy. It is then not difficult to show, in the scal-
ing regime, that

cP%s(12)= '/’2" [f_“’ dx,x,G(x,) | f(12)y(12) ,

(6.48)

where we assume that G is a local functional of o and
vanishes as |m|— . This last restriction is not severe
for the following reason: Consider a general G =G (o)
which is odd in o since C, ; vanishes by symmetry oth-
erwise. Then, if as m — =+ «, 0 — £, one can write

G=Gy,o+AG , (6.49)
where AG —0 as |m|— . Then one can write
C,.6(12)=G,C, ,(12)+C, 45(12) (6.50)

and we can restrict further arguments to C, ,(12) as in-
dicated above since C, ,(q)=~0(g*) for small ¢. Insert-
ing Eq. (6.48) into Eq. (6.47) gives

06(12)———— [f dxlx,G(xl)]
X [f(12)'y(12)

d

+2A2(12)m

f(12)y(12)] .
(6.51)
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It is easy to see that

ofy) _y°
5c, s, (6.52)
and we have the final result
c, (12)—————[[ dx,x,G(x,) |y(12)
X[f(12)+2g (12)yX12)] . (6.53)

Therefore, for any G (o) in this class, the conservation
law is satisfied if the integral of C, ; over all (scaled) dis-
tances vanishes:

[ d%y(x)[f (x)+2g (x)y*x)]=0 (6.54)
Notice that this result does not depend on the particular
form of G.

In the Gaussian approximation this constraint reduces
to the requirement

[ d%xy(x)f (x)=W,,=0.

We found earlier, however, that W, >0, so the Gauss-
ian approximation is incompatible with this manifesta-
tion of the conservation law. In the post-Gaussian ap-
proximation we find that it is possible to satisfy this con-
straint.

(6.55)

E. Numerical results (d =3)

The first step in solving the coupled pair of equations,
Eqgs. (6.10) and (6.24) is to carry out the same first in-
tegration as led from Eq. (5.26) to Eq. (5.27) on Eq. (6.10).
We then have a second-order differential equation for
f +2g and a first-order differential equation for g. This
second-order equation for f +2g can be converted into a
second-order equation for f by taking another derivative
of g’ which is used in f''+2g"’ to eliminate g"'.

There are four basic input parameters in this problem:
ag, Bo, 1%, and A'. This is a large parameter space to
search for solutions to this rather complicated set of
equations. In looking at the role of the four parameters
involved in the analysis we find that they divide into two
sets. The set of parameters 4% and /2 did not enter into
the Gaussian case. The other set is oy and B, which are
equivalent to @ and B, in the Gaussian case (a,=m"a’/8,
Bo=2B,/a,). We find that this last set of parameters
take on approximately the same values in the post-
Gaussian case as in the Gaussian case. The numerical
work has thus far been limited to three dimensions.
Looking in this region and for small values of Ay’
(0.0001 < 43¥ <0.0024), we have found at least one
branch of physically acceptable solutions. We have not
looked for smaller values of 4> and have not been able
to find physically acceptable solutions for 452 >0.0032.
By a physically acceptable solution, we mean one which

satisfies the conservation law
[ d*F(x)=0 (6.56)

One obtains these physical solutions only for a band of
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small values of /2 for each small value of 4. Thus, for
example, for 43> =0.0016, we find physically acceptable
solutions for the approximate range of values
0.0340<1%2<0.0530. A very interestin% point is that, for
each physically acceptable value of 43, one can find a
value for /2 for which one can satisfy the conservation
law constraint given by Eq. (6.54). This line of solutions
is shown in Fig. 5. For larger values of 4%, because of
instabilities associated with g becoming positive, we have
not been able to find physically acceptable solutions. On
the other hand, for these sets of parameters, the
coefficient of the Q* term in F(Q) is slightly negative. If
one abandons satisfying the higher-order conservation
law, then one can find values of /2 for which the
coefficient of Q* in the structure factor is very small but
positive. A key observation is that the scaling function
itself, shown in Fig. 6, and the structure factor, shown in
Fig. 3, except for the small Q behavior is rather
unaffected by the particular choices of 45 and /2 within
the physically acceptable band of solutions. The results
presented here are for A5 =0.000159, /2=0.003 75,
a,=0.9687, ..., By=—0.5012,... . These values cor-
respond to a=1.0120. . . and 8,= —0.2619. In this case,
we have that the coefficient of the Q* term is positive but
very small.

By far the most important qualitative change in the
analysis between the Gaussian and post-Gaussian cases is
that the quantity f, which is oscillatory in the Gaussian
case (see Fig. 3), becomes positive in the post-Gaussian
case (see Fig. 7). Thus the qualitative feature that the
Fourier transform of f goes negative for small wave num-
bers is clearly removed and the theory is put on much
firmer ground in the COP case. Qualitatively, what hap-
pens in this case is that f and —2g, which are both posi-
tive, subtract to give the oscillatory behavior of F. Note,
as in the NCOP case, the quantity g, shown in Fig. 7,
while not large, is quantitatively significant even though
AP is very small. A full probe of possible solutions of
the coupled set of equations is numerically time consum-
ing but straightforward.

0.0016 T T T - T T T T T

0.0012} 4
(2)
A

0.0008+

0.0004 r

0.63 0.&)4 0.65
22
FIG. 5. Line of solutions in the PGA which satisfy the con-
servation law Eq. (6.54) in three dimensions.
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FIG. 6. Comparison of the theoretical scaling function F(x)
in the PGA with the GDA result (dashed line). Notice that in
this case, we did not fix the lengths such that the two curves
share the same first zero as was arranged in Fig. 1.

In Figs. 1, 2, and 6 we show the comparison among the
F(x) and F(Q) in the GDA and PGA and with the nu-
merical work of Ref. [12]. We see that in coordinate
space the comparison is good. The agreement for the
structure factor is not as good. While the fit to the Porod
tail and the peak height is pretty good for both the GDA
and PGA, the width of the theoretical structure factors is
much narrower than for the numerical results. This can
be partially attributed to the very small coefficients of Q*
found in the theory. This point requires further study.

F. Short-distance matching
The generalization of the result Eq. (5.40) to the PGA
is given by
1+2g4/a,

1—AYAV@ /h,—(AY)2A
T AV /g —(AY)?A,

4 ay?d —1)
m

=0, (6.57)

0.2+ 1

-0.2 N R \ . .

FIG. 7. Autocorrelation function f for the auxiliary field m
for the PGA in three dimensions. Also shown (dashed line) is
the quantity g.
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where

Y=S},2’+A‘22’—-%(a0+2g0)12. (6.58)

VII. CONCLUSIONS

A more general approach to the theory of growth
kinetics, which goes beyond the limitations of the Gauss-
ian approximation for the appropriate auxiliary field, has
been presented for the COP case. The theory is
developed in terms of a rather general probability distri-
bution characterized by a set of functions
[Cos Ay, Ay, ..., ]. It is shown that if one truncates this
set at low-order averages of the original equation of
motion can be used to determine, for example, C, and
A,. It is very encouraging that the simple set [Cy, 4, ]
leads to a theory which is qualitatively improved over the
Gaussian case.

It is clear from this and previous work that the COP
case is considerably more constrained than the NCOP
case and the long-distance, small wave-number properties
are very delicate. However, we believe that in this work
we have been able to gain some insight and control over
the type of theory needed to handle this part of the prob-
lem. Indeed, from the point of view of the scaling func-
tion, for all but the largest scaled distances the theory ap-
pears to be very good. At the longest distances, we see
that there are a number of competing constraints:

Jd*Fx)=0, (7.1)

[ d%x?F(x)=0, (7.2)
Jatuxtr e =—2E22) [ gi (1 (0)+2g (0010,
(7.3)
Jd%y(x)f (x)+28 (x)*x)]=0, (7.4)
and
Jd%fx>0. (7.5

In the naive theory, where g =0, (7.1) and (7.2) are the
only constraints satisfied. In the GDA, where again g =0,
(7.1), (7.2), and (7.3) are satisfied but (7.4) and (7.5) cannot
be satisfied. In the PGA one can satisfy (7.1), (7.2), and
(7.5) easily, but one cannot apparently, simultaneously
satisfy (7.3) and (7.4). Thus, one is gaining progressive
control over these properties and it should be clear that it
is likely that by going to higher orders in the theory one
will be able to satisfy the progressively more stringent
constraints.

There remain several questions concerning the PGA.
One question concerns a more exhaustive analysis of the
numerical solutions as a function of 452 and /2. It is not
yet completely clear how the parameter 12 should be in-
terpreted. At this stage the identification of /2 as in the
treatment of the GDA seems operative. This does not,
however, appear to be final since it would seem to imply
that /2 and, therefore, F(x) are nonuniversal. It seems
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more likely that in a higher-order approximation, where
conditions (c) and (d) above can be simultaneously
satisfied, there will be a selection mechanism for /2. For
this reason it seems that one will have to go to the next
order theory in order to obtain a good estimate for the
coefficient of the Q* term in the structure factor.
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APPENDIX

In Sec. VD the short-distance behavior for the Gauss-
ian model was discussed. As indicated there, the other
limit of interest at O(L ~!) is where £<<R <<L, and
where the short-distance and the scaling behavior must
match. In this case, in evaluating Eq. (5.3), the basic re-
sults needed are

cO<R,z)=S0—l;—~2R2(1+2B'2R JL+ ), (A)
CoolR,0)=93 1—5% 1+Bz-%+~- . (A2)

where @ =al and B=pI are the short-distance coefficients
before rescaling distances. One also needs the general re-
sult valid at O (L ~!), derived in Ref. [2], that for R <<L,
that

_p dxydx, 5y 2
CAB(R,t)—fmexp[—(xl—xz) /b*]
X A(x,)B(x,), (A3)
where
b2=4(S,—C,) , (A4)
and, for large R,
172
b=b_R+0O(R "= % aR (A5)

for R >>£. One can go further by recognizing that b,
must be related to the short-distance coefficient a associ-
ated with F(x) and determined in the eigenvalue problem
solved above. One easily finds

172

a (A6)

for R >>£. One also needs the recursion relation Eq.
(5.12) to evaluate the quantities W'”. Only the first two
matrix elements, W1 and W'?), contribute in this limit
from W. For large R and b, we obtain

(o) S(b)
S(R)  ZUR)

A7
L bL ’ (A7)

3(R,)=
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where
S(o(R)=—uoq3o+Ayoq3db?, (A8)
and
< 245
(b) =——[—14 2 — _)\'2 2A
2(R) ‘/i;[ 1+b5,(d—1) YA
— M AV P sy, (A9)
and we have defined
y=832’—%b%° , (A10)

where

AP?P= 7 dx AVP(a(x)) (A11)
and

AV P o)=V >N o)—g2_, . (A12)
Since V23 =0, at this order, we have

—1+b%(d —1)—A%2A,—ApAV? /=0 . (A13)

In terms of @, we have the result given by Eq. (5.40).
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